Perpustakaan Universitas Peradaban

Jl. Raya Pagojengan Km. 3 Paguyangan - Brebes Telp./Fax. (0289) 432032

  • Home
  • Information
  • News
  • Help
  • Librarian
  • Member Area
  • Select Language :
    Arabic Bengali Brazilian Portuguese English Espanol German Indonesian Japanese Malay Persian Russian Thai Turkish Urdu

Search by :

ALL Author Subject ISBN/ISSN Advanced Search

Last search:

{{tmpObj[k].text}}
Image of Deep learning : modernisasi machine learning untuk big data
Bookmark Share

Text

Deep learning : modernisasi machine learning untuk big data

SUYANTO - Personal Name; Kurniawan Nur Ramadhani - Personal Name; Satria Mandala - Personal Name;

Sejumlah perusahaan raksasa telah sukses membangun banyak aplikasi berbasis deep learning (DL) yang impresif, penuh keajaiban. Kesuksesan ini merupakan hasil kerja keras selama bertahun-tahun dalam membangun sistem-sistem berbasis DL, mulai dari gagasan, arsitektur model, teknik pembelajaran, hingga framework sampai dihasilkan performansi yang mendekati, bahkan melebihi, kemampuan manusia. Konsep dan gagasan DL sebenarnya telah ada sejak lama. Sebagai contoh, Restricted Boltzmann Machines (RBM) merupakan pembaruan dari konsep Hopfield Network yang sangat populer di tahun 1980-an. Sejumlah RBM bisa ditumpuk menjadi beberapa lapisan. Penumpukan RBM ini ternyata memberikan peningkatan performansi yang sangat signifikan. Ide inilah yang menjadi titik awal munculnya DL. Selanjutnya, para pakar semakin bersemangat mengembangkan model-model DL yang lebih andal dengan melakukan pembaruan konsep-konsep dan ide-ide lama. Mereka mulai mengembangkan Stacked Autoencoders (SAE), Deep Belief Networks (DBN), Generative Adversarial Networks (GAN), Convolutional Neural Networks (CNN), Capsule Networks (CapsNet), Deep Recurrent Networks (DRN), Deep Reinforcement Learning (DRL), hingga Lifelong Learning (LL). Model-model ini mampu memberikan performansi mengagumkan dalam menangani himpunan data sangat besar. Jadi, DL bisa dikatakan sebagai modernisasi machine learning untuk menangani big data. Buku ini memberikan penjelasan dan ilustrasi sederhana mengenai konsep dasar dari empat pendekatan DL serta aplikasinya dalam berbagai bidang terkini berkaitan dengan big data yang tidak terstruktur: teks, citra, suara, dan video. Buku ini juga mendiskusikan penelitian awal tentang pengenalan ucapan audiovisual Bahasa Indonesia. Pembahasan diberikan dari konsep dasar paling simpel dan secara perlahan ke ide-ide besar yang semakin kompleks. Setiap model dibahas dari ide dasar, motivasi, visualisasi, formulasi matematis, hingga contoh aplikasinya.


Availability
#
PERPUSTAKAAN PUSAT 006.31 SUY d
T00985
Available
Detail Information
Series Title
-
Call Number
006.31 SUY d
Publisher
Bandung : Informatika., 2019
Collation
xiv, 250 p. : il. ; 24 cm
Language
Indonesia
ISBN/ISSN
978-623-7131-21-2
Classification
006.31
Content Type
text
Media Type
-
Carrier Type
-
Edition
Oktober 2019
Subject(s)
Pemrograman
capsule networks
Machine Learning
Specific Detail Info
-
Statement of Responsibility
-
Other version/related

No other version available

File Attachment
No Data
Comments

You must be logged in to post a comment

Perpustakaan Universitas Peradaban
  • Information
  • Services
  • Librarian
  • Member Area

About Us

As a complete Library Management System, SLiMS (Senayan Library Management System) has many features that will help libraries and librarians to do their job easily and quickly. Follow this link to show some features provided by SLiMS.

Search

start it by typing one or more keywords for title, author or subject

Keep SLiMS Alive Want to Contribute?

© 2026 — Senayan Developer Community

Powered by SLiMS
Select the topic you are interested in
  • Computer Science, Information & General Works
  • Philosophy & Psychology
  • Religion
  • Social Sciences
  • Language
  • Pure Science
  • Applied Sciences
  • Art & Recreation
  • Literature
  • History & Geography
Icons made by Freepik from www.flaticon.com
Advanced Search
Where do you want to share?